


















	Blog
	Podcast
	
API doc course
	Course home
	 Chapter 1: Introduction to REST APIs
	 Chapter 2: Using an API like a developer
	 Chapter 3: Documenting API endpoints
	 Chapter 4: OpenAPI spec and generated reference docs
	 Chapter 5: Step-by-step OpenAPI code tutorial
	 Chapter 6: Testing API docs
	 Chapter 7: Conceptual topics in API docs
	 Chapter 8: Code tutorials
	 Chapter 9: The writing process
	 Chapter 10: Publishing API docs
	 Chapter 11: Publishing tools and workflows
	 Chapter 12: Thriving in the API doc space
	 Chapter 13: Native library APIs
	 Chapter 14: Processes and methodology
	 Chapter 15: Metrics and measurement
	 Chapter 16: Glossary
	 Chapter 17: Additional resources



	
AI-powered docs
	 AI-powered documentation
	 AI category posts



	
About
	 About me
	 Contact
	 Presentations
	 Newsletter
	 Site analytics
	 Advertising
	 Archives





	















































Email Newsletter










Newsletter signup





×









Close













Documenting APIs


Collapse All | Expand All


	Chapter 1: Introduction to REST APIs
	Overview
	Course Overview
	What's new
	Workshop video recordings
	Download PDFs
	Workshop agenda, slides, activities
	Why I developed this course
	About the author
	Introduction to REST API documentation
	What is a REST API?
	Activity: Identify your goals
	Developer Documentation Trends: Survey Results



	Chapter 2: Using an API like a developer
	Overview
	Scenario for using a weather API
	Get authorization keys
	Submit requests through Postman
	curl intro and installation
	Make a curl call
	Understand curl more
	Activity: Use methods with curl
	Analyze the JSON response
	Inspect the JSON from the response payload
	Access and print a specific JSON value
	Dive into dot notation



	Chapter 3: Documenting API endpoints
	Overview
	A new endpoint to document
	API reference tutorial overview
	Step 1: Resource description
	Step 2: Endpoints and methods
	Step 3: Parameters
	Step 4: Request example
	Step 5: Response example and schema
	Putting it all together
	Activity: What's wrong with this API reference topic
	Activity: Evaluate API reference docs for core elements



	Chapter 4: OpenAPI spec and generated reference docs
	Overview
	Overview of REST API specification formats
	Introduction to the OpenAPI specification
	Stoplight: Visual modeling tools for creating your spec
	Getting started tutorial: Using Stoplight Studio to create an OpenAPI specification document
	Swagger UI tutorial
	SwaggerHub introduction and tutorial
	Swagger UI Demo
	Integrating Swagger UI with the rest of your docs
	Redocly tutorial -- authoring and publishing API docs with Redocly's command-line tools
	Redoc Community Edition Basic Demo



	Chapter 5: Step-by-step OpenAPI code tutorial
	Overview
	OpenAPI tutorial using Swagger Editor and Swagger UI: Overview
	Working in YAML
	Step 1: The openapi object
	Step 2: The info object
	Step 3: The servers object
	Step 4: The paths object
	Step 5: The components object
	Step 6: security object
	Step 7: The tags object
	Step 8: The externalDocs object
	Activity: Create an OpenAPI specification document



	Chapter 6: Testing API docs
	Overview
	Overview of testing your docs
	Set up a test environment
	Test all instructions yourself
	Test your assumptions
	Activity: Test your project's documentation



	Chapter 7: Conceptual topics in API docs
	Overview
	API conceptual topics overview
	API product overviews
	API getting started tutorials
	API authentication and authorization
	API status and error codes
	API rate limiting and thresholds
	API quick reference
	API glossary
	API best practices
	Activity: Complete the SendGrid Getting Started tutorial
	Activity: Assess the conceptual content in your project



	Chapter 8: Code tutorials
	Overview
	Common characteristics of code tutorials
	Why documenting code is so difficult
	What research tells us about documenting code
	Five strategies for documenting code
	Code samples
	Sample apps
	SDKs (software development kits)
	API design and usability
	Developer experience (DevX) usability



	Chapter 9: The writing process
	Overview
	Overview of the writing process
	1. Planning
	2. Information gathering
	3. Writing
	4. Reviewing
	5. Publishing



	Chapter 10: Publishing API docs
	Overview
	Overview for publishing API docs
	Survey of API doc sites
	Design patterns with API doc sites
	Docs-as-code tools
	More about Markdown
	Version control systems
	Static site generators
	Hosting and deployment options
	Hybrid documentation systems
	Which tool to choose for API docs — my recommendations



	Chapter 11: Publishing tools
	Overview
	Activity: Manage content in a GitHub wiki
	Activity: Use the GitHub Desktop Client
	Activity: Pull request workflows through GitHub
	Jekyll and CloudCannon continuous deployment tutorial
	Using Oxygen XML with docs-as-code workflows
	Blobr: An API portal that arranges your API's use cases as individual products
	Case study: Switching tools to docs-as-code
	Tools FAQ



	Chapter 12: Thriving in the API doc space
	Overview
	The job market for API technical writers
	How much code do you need to know?
	Best locations for API documentation jobs
	Activity: Find an Open-Source Project
	Activity: Create or fix an API reference documentation topic



	Chapter 13: Library-based APIs
	Overview
	Overview of native library APIs
	Get the sample Java project
	Java crash course
	Activity: Generate a Javadoc from a sample project
	Javadoc tags
	Explore the Javadoc output
	Make edits to Javadoc tags
	Doxygen, a document generator mainly for C++
	Create non-ref docs with native library APIs



	Chapter 14: Processes and methodology
	Overview
	DX content strategy with developer portals
	Following agile scrum with documentation projects
	Managing large documentation projects
	Managing small documentation requests
	Managing SDK releases
	Documentation kickoff meetings and product demos
	Processes for reviewing documentation
	Maintaining existing documentation
	Collecting feedback post-release
	Managing content from external contributors
	Changing internal doc culture
	Sending doc status reports -- a tool for visibility and relationship building
	Broadcasting your meeting notes to influence a wider audience
	Ensuring documentation coverage with each software release



	Chapter 15: Metrics and measurement
	Overview
	Measuring documentation quality through user feedback
	Different approaches for assessing information quality
	Quality checklist for API documentation
	Quantifying your progress



	Chapter 16: Glossary
	Overview
	Glossary
	Glossary groups



	Chapter 17: Additional resources
	Overview
	Documenting GraphQL APIs
	More REST API activities
	Activity: Get event information using the Eventbrite API
	Activity: Retrieve a gallery using the Flickr API
	Activity: Get wind speed using the Aeris Weather API
	RAML tutorial
	API Blueprint tutorial
	API jeopardy answer key
	What's wrong with this topic answer key
	Menlo Park API workshop video recording
	Denver API workshop video recording
	API doc presentation video recordings
















Recent posts from Zen and the Art of Motorcycle Maintenance series

	
 The importance of using the right tools (Nov 26, 2023)

	
 Bleeding my brakes (ZAMM series) (Nov 26, 2023)

	
 Main takeaway: How to incorporate intuitive thinking (ZAMM series) (Dec 1, 2023)

	
 Why I decided to reread Zen and the Art of Motorcycle Maintenance (ZAMM series) (Nov 26, 2023)







Recent posts from my AI tech comm series

	
 Use cases for AI: Synthesize insights from granular data (Aug 27, 2023)

	
 Use cases for AI: Arrange content into information type patterns (Jul 6, 2023)

	
 Use cases for AI: Develop build and publishing scripts (Jul 19, 2023)

	
 AI and APIs: What works, what doesn't (Sep 28, 2023)

	
 Use cases for AI: Summarize long content (Sep 6, 2023)

	
 Use cases for AI: Understand the meaning of code (Jul 25, 2023)

	
 Use cases for AI: Seek advice on grammar and style (Aug 4, 2023)

	
 Use cases for AI: Create glossary definitions (Sep 4, 2023)

	
 Use cases for AI: Distill needed updates from bug threads (Aug 6, 2023)

	
 Use cases for AI: Compare API responses to identify discrepancies (Aug 28, 2023)







Recent blog posts

	
 Prompt engineering: Reverse engineering the recipe for excellent documentation (Mar 4, 2024)

	
 Prompt engineering series: Populating documentation templates using AI (Mar 4, 2024)

	
 Prompt engineering: Task decomposition and complex tree diagrams (Feb 20, 2024)

	
 Prompt engineering: Creating high-fidelity, thematically organized notes from engineering meetings using AI (Feb 20, 2024)

	
 Upcoming conference: AI the API docs (Feb 17, 2024)

	
 Visualizing APIs with tree diagrams, partly generated with AI (Feb 13, 2024)

	
 Walking and chatting with ChatGPT (Jan 21, 2024)

	
 Moved AI pages into their own collection and space (Jan 20, 2024)

	
 Coffee Chat recording: Ask Me Anything about Managing API documentation projects (Jan 8, 2024)

	
 Evaluating my 2023 site analytics -- why did my traffic drop? (Jan 7, 2024)







Popular series

	 Reflections on Zen and the Art of Motorcycle Maintenance
	 Journey away from smartphones
	 Trends to follow or forget
	 Simplifying complexity
	 Value arguments for docs and tech comm
	 See all series







Archives

2024 •
2023 •
2022 •
2021 •
2020 •
2019 •
2018 •
2017 •
2016 •
2015 •
2014 •
2013 •
2012 •
2011 •
2010 •
2009 •
2008 •
2007 •
2006 •
Posts by tag •
See all posts by year











Search results
















	I'd Rather Be Writing
	Docs
	
Chapter 1: Introduction to REST APIs





Documenting APIs: A guide for technical writers and engineers







Last updated: Apr 18, 2023 











Download PDF

In this course on writing documentation for APIs, instead of just talking about abstract concepts, I contextualize APIs with a direct, hands-on approach. You’ll first learn about API documentation by using a simple weather API to put a weather forecast on your site.

As you use the API, you’ll learn about endpoints, parameters, data types, authentication, curl, JSON, the command line, Chrome’s Developer Console, JavaScript, and more. The idea is that rather than learning about these concepts independent of any context, you learn them by immersing yourself in a real scenario while using an API. Immersion in real scenarios makes these tools and technologies more meaningful.

We’ll then transition into standards, tools, and specifications for REST APIs. You’ll learn about the required sections in API documentation, analyze examples of REST API documentation from various companies, learn how to join an open-source project to get experience, and more.

	About REST APIs
	From practice to documentation
	Who the course is for
	Course organization
	Sequence and activities
	How long will it take to finish the course?
	Will this course help you get a job in API documentation?
	No programming skills required
	What you’ll need
	Testing Your Setup
	Video recordings
	Course slides
	Copyright and re-use of materials
	Is this course really free?
	PDF and Kindle/eBook formats
	Let me know if any content is out of date
	Stay updated
	Other resources


About REST APIs

In a nutshell, REST APIs (which are a type of web API) involve requests and responses, not too unlike visiting a web page. You make a request to a resource stored on a server, and the server responds with the requested information. The protocol used to transport the data is HTTP. “REST” stands for Representational State Transfer.

REST APIs involve requests and responses over HTTP protocol
I dive more into the principles of REST in What is a REST API? In REST API documentation, you describe the various endpoints available, their methods, parameters, and other details, and you also document sample responses from the endpoints.

From practice to documentation

In this course, after you practice using an API like a developer, you’ll then shift perspectives and “become a technical writer” tasked with documenting a new endpoint that engineers added to an API. As a technical writer, you’ll tackle each element of a reference topic in REST API documentation:

	Resource descriptions
	Endpoints and methods
	Parameters
	Request example
	Response example


Exploring each of these sections will give you a solid understanding of how to document REST APIs. You’ll also learn how to document the conceptual sections for an API, such as the getting started tutorial, product overview, status and error codes, request authorization, and more.

You’ll also dive into different ways to publish REST API documentation, exploring tools and specifications such as GitHub, static site generators like Jekyll, and other docs-as-code approaches. You’ll learn how to leverage templates, build interactive API consoles so users can try out requests and see responses, and learn how to manage your content through version control.

We’ll also dive into specifications such as the OpenAPI specification and Swagger UI (which provides tooling for the OpenAPI specification). Additionally, you’ll learn how to document native library APIs and generate Javadoc.

Tech writing is about more than tools and technology, though. As such, I even explore processes and methodologies in depth, explaining how to manage both large and small documentation projects, how to collect documentation feedback, how to keep stakeholders happy and updated, and more.

I’ve also included a section on metrics and measurement, which lists a comprehensive quality checklist. The criteria described can help you evaluate your own developer portal in myriad ways against industry best practices.

Throughout this course, I put these concepts in real, applicable contexts with hands-on activities and demos.

Who the course is for

The course primarily serves the following audiences:

	Professional technical writers looking to transition from traditional documentation into more API-focused documentation for developers.
	Students learning how to prepare themselves technically to succeed in the tech comm field, which is becoming more focused on developer documentation.
	Developers who are documenting their own APIs and want to know best practices for structure, terminology, and style with tech docs.
	Educators who are training technical writing students about API documentation practices and technologies.


Course organization

The course consists of the following sections:

	
Chapter 1: Introduction to REST APIs. REST APIs consist of requests and responses between clients and servers over the web. Although there are many types of APIs, REST APIs are flourishing, and there’s a strong need for API documentation at almost every company that provides an API. Technical writers can apply their skills to fill this gap in highly valuable ways. This introduction discusses different types of APIs, reasons for API growth, and why docs are critical for REST APIs. It outlines course contents, prerequisites, goals, and target audiences. The introduction sets the stage for learning API documentation through the hands-on activities in the course.


	
Chapter 2: Using an API like a developer. In this chapter, you use a REST API like a developer would. You get API keys, make requests with Postman and curl, analyze JSON responses, and dynamically display API responses on a web page. These hands-on activities give you context for understanding developer needs and workflow. After using the API in this way, you switch perspectives and prepare to start documenting an API as a technical writer.


	
Chapter 3: Documenting API endpoints. The bulk of API documentation focuses on the resources available (accessed through endpoints) and the data returned. API reference documentation usually includes five key sections for each resource: resource description, endpoints and methods to access the resource, parameters, request examples, and response examples and schemas. After learning about each section, you document a sample resource. You also evaluate and improve existing API reference topics.


	
Chapter 4: OpenAPI spec and generated reference docs. The OpenAPI specification provides a standard way to describe REST APIs, and includes elements such as paths, operations, parameters, and schemas. Tools like Stoplight, Swagger UI, SwaggerHub, and Redocly can generate interactive API reference documentation from the OpenAPI spec. In this chapter, you follow a tutorial for using Stoplight, a visual editor, to create an OpenAPI specification file and publish the documentation. As you work with the OpenAPI spec, you learn about “spec-first development,” a philosophy of creating the spec before developers write API code, as well as other challenges, such as integrating the reference output and conceptual documentation in a seamless experience.


	
Chapter 5: Step-by-step OpenAPI code tutorial. Whereas the previous chapter involved building and publishing OpenAPI specification using a visual editor (Stoplight), in this chapter you code the spec by hand following a step-by-step tutorial using the Swagger Editor. You populate each of the main objects in the OpenAPI spec: openapi, info, servers, paths, components, security, tags, and externalDocs. For each object, you can refer to code samples and see how the source maps to the documentation output. The goal is to gain familiarity with the OpenAPI objects and properties by building a valid OpenAPI file from scratch.


	
Chapter 6: Testing API docs. Testing documentation against your APIs is critical for documentation quality. Fortunately, testing REST APIs and their responses tends involves less setup and expertise than testing library-based APIs like Java. Even so, to test your docs, you need to set up a test environment and get access to API keys or other resources. This will involve collaborating with QA teams. Your goal should be to walk through your instructions personally, making test calls and verifying the responses. You also should push back against any technical assumptions as you champion user needs. In short, testing docs means avoiding passively documenting what engineers say but rather actively validating as much as you can.


	
Chapter 7: Conceptual topics in API docs. Conceptual topics that make up documentation include product overviews, getting started tutorials, authentication and authorization, status and error codes, rate limiting and thresholds, quick reference guides, glossaries, and best practices. These topics provide critical context for understanding and using the API beyond just the reference documentation. The chapter explores best practices for each topic, reasons why the topics are often neglected, and includes examples from API documentation sites. Activities guide you to evaluate these topics in an open source API project and decide which examples demonstrate best practices. The chapter emphasizes the importance of conceptual documentation in facilitating the user’s journey in understanding and adopting the API.


	
Chapter 8: Code tutorials. Documenting code can be one of the most challenging aspects of API documentation, especially for non-engineers. Code can be hard to document because of its non-linear nature. For example,you don’t simply start by describing chunks of code from top to bottom. Figuring out your audience’s technical level can also be a guessing game, as a user’s proficiency in one language or area might not carry over to another. As you document code, focus on the “why” instead of the “how,” and consider building up complexity in stages, starting simple and expanding into more advanced use cases. If you can provide interactive browser experiences with code, which allows users to adjust the input and immediately see the output, this can also help developers learn.


	
Chapter 9: The writing process. The five main steps in the documentation writing process include (1) Planning (creating a doc plan, establishing roles), (2) Gathering information (interviewing engineers, product managers, etc.), (3) Writing (separating content into groups, outlining, scheduling reviews, writing the first draft), (4) Reviewing (reaching out to the right people, incorporating feedback, resolving conflicts), and (5) Publishing (integrating new content, adding metadata, coordinating timing, publicizing releases). This chapter provides practical tips in each writing step, such as recording engineering interviews, bringing questions to review meetings, and publicizing releases through newsletters. Although many other aspects of API documentation might seem more pressing, such as configuring your publishing toolchain, writing is still a core task technical writers do when creating API documentation.


	
Chapter 10: Publishing API docs. When you’re publishing API documentation, it’s important to have consistent structure and templates, ensure seamless branding, provide plenty of code samples, and follow other API documentation conventions. If you can include an interactive API explorer, users will love it. In this chapter, you dive into tools like Jekyll, Hugo, Sphinx, GitHub Pages, and ReadTheDocs for documentation. The chapter encourages you to embrace the docs-as-code approach, which means using static site generators, version control (Git), lightweight documentation syntax (Markdown), continuous integration, and more. Docs-as-code tools fit well into engineering workflows, making it easier for developers to contribute and review documentation.


	
Chapter 11: Publishing tools. Publishing technical documentation typically involves following docs-as-code tools and workflows. For open source projects, GitHub is frequently used to manage content. But even within the enterprise, Git is still common. A typical documentation workflow involves making pull requests with doc changes that get rolled into the main branch. In this chapter, you explore some of these workflows using tools like GitHub wikis, Jekyll, CloudCannon, Oxygen XML and more. It’s important to become comfortable working from the command line to create branches, get updates, perform merges, and push builds.


	
Chapter 12: Thriving in the API doc space. Getting a job in API documentation requires you to have some familiarity programming languages, experience writing developer docs, and a portfolio of writing samples. Chances are, hiring managers will want you to be tech savvy and comfortable working in code, with less to say about your actual writing skills. While opportunities for API documentation roles exist globally, tech hubs such as California, Texas, New York, and Virginia have a higher concentration of these jobs. If you need to build up a writing portfolio, consider contributing to open source projects and creating sample API reference documentation.


	
Chapter 13: Library-based APIs. Library-based APIs are programming-language-specific APIs, such as Java and C++ libraries (instead of web APIs) that developers compile into their code instead of accessing via web protocols. If you’re documenting a library-based API, at least for the reference content, you add documentation in the form of code comments (following specific tags), and then build the output using tools like Javadoc (for Java) or Doxygen (for C++). Each library-based API has its own documentation generators that build from source and output documentation from comments in that source. Although working in the source code might seem uncomfortable at first, it’s essential to become familiar with these workflows if you want to contribute to the API’s reference documentation.


	
Chapter 14: Processes and methodology. This chapter dives into project methodologies to manage technical documentation work. For both extensive projects and minor documentation requests, file the requests as bugs and managing them using a Scrum-like methodology, preferably following similar management processes as your engineers. You need to understand your engineering organization’s release cycle process and plug documentation into that cadence so that you can anticipate upcoming documentation needs and orchestrate reviews in time for the releases. Besides working on new requests, you also need a method for maintaining existing documentation and ensuring quality. From SDK releases to kickoff meetings and more, you need processes to follow. To facilitate communication, tech writers should be visible and participate in the activities, forums, and channels around them.


	
Chapter 15: Metrics and measurement. Measuring API documentation quality and tracking its improvement is a frequent management request that’s challenging to fulfill. User surveys and satisfaction scores offer some insight, but they shouldn’t be the only evaluation tools. This chapter provides a comprehensive quality checklist for API documentation and developer portals, spanning more than 70 different aspects that involve accuracy, clarity, completeness, and relevance across your API documentation. This checklist can help highlight areas to focus on and be a springboard for discussion about ways to improve your developer portal. Although scoring methods are possible, your primary focus should be to agree on clear, actionable standards for documentation quality.


	
Chapter 16: Glossary. This glossary provides definitions and explanations for over 130 key terms related to API documentation. The terms span a wide range of topics relevant to documenting REST APIs, including general API concepts, OpenAPI/Swagger specifics, API parameters, responses, methods, tools, project management approaches, writing best practices, and more. The terms are organized alphabetically as well as by common topic groups, allowing you to easily browse terms within certain subject areas.


	
Chapter 17: Additional resources. Additional resources provides a variety of supplementary material to expand on topics covered in the course. This is also the section where content gets archived that no longer fits into the other chapters. There are several hands-on activities for calling additional APIs to get more practice working with endpoints, parameters, and responses. Tutorials are provided for two (semi-abanoned) API specification formats: RAML and API Blueprint. The chapter also contains answer keys for activities, as well as video recordings of previous workshops.




You can download a PDF of this course here. The download includes a comprehensive PDF of the entire course (900+ pages) as well as individual chapter PDFs, which are more practical for printing. The chapter PDFs are all under 10MB, which means you can also upload them into Claude.ai or other AI tools with large input allowances and interact with the information that way.

Sequence and activities

You don’t have to read the sections in order — feel free to skip around as you prefer. Some of the earlier sections (such as the section on Using a REST API like a developer and Documenting endpoints) follow a somewhat sequential order with the same weather API scenario, but by and large you can jump around as desired.

Because the purpose of the course is to help you learn, there are many activities that require hands-on coding and other exercises. Along with the learning activities, there are also conceptual deep dives, but the focus is always on learning by doing. Where there are hands-on activities, I typically include this icon in the section title: . Other topics have the word “Activity” in the title. The activities are integrated into various sections, but you can also see many of the activities in the Workshop Activities. These are the activities we do during live workshops.










I refer to the content here as a “course” instead of a book or a website, primarily because I include a lot of exercises throughout in each section, and I find that people who want to learn API documentation prefer a more hands-on “course” experience. Below each topic is a progress indicator that reminds you to keep moving through the course.

How long will it take to finish the course?

Don’t be daunted if you never make it entirely through the course. If printed to PDF, the content is about 900 pages. And I keep adding to the content, refining it, rearranging and adjusting it as I see fit and as I grow my experience and awareness. It’s a living document. Almost no one really finishes the course from beginning to end because by the time they do, I’ll have added new content.





Also, you should only focus on those sections that you need to learn. See this Reddit post, Has anyone here completed the idratherbewriting API writing course by Tom Johnson?. For someone already familiar with many concepts, they can breeze through the course in less than a week. For someone new to API documentation, they might spend many months making their way through the course. If you keep finding value in the content, take as long as you want. If you don’t find yourself learning anything, skip forward.

Will this course help you get a job in API documentation?

The most common reason people take this course is to transition into API documentation. This course will help you make that transition, but you can’t just passively read through the content. You need to do the activities outlined in each section, especially those topics that involve working with content from an open-source project (or something similar). These activities are crucial to building experience and credibility with a portfolio. I provide more details in Getting an API documentation job and thriving. Without a strong portfolio to demonstrate your writing expertise, almost no manager will hire you, even if you have an extensive tech background.

No programming skills required

As for the needed technical background for the course, you don’t need any programming background or other prerequisites, but it will help to know some basic HTML, CSS, and JavaScript.

If you do have some familiarity with programming concepts, you might speed through some of the sections and jump ahead to the topics you want to learn more about. This course assumes you’re a beginner, though.

Some of the code samples in this course use JavaScript. JavaScript may or may not be a language that you actually use when you document REST APIs, but most likely there will be some programming language or platform that becomes important to know.

JavaScript is one of the most useful and easy languages to become familiar with, so it works well in code samples for this introduction to REST API documentation. JavaScript allows you to test code by merely opening it in your browser (rather than compiling it in an IDE). (I have a quick crash-course in JavaScript here if you need it.)





What you’ll need

Here are a few tools you’ll need to do the activities in this course:

	Computer. You need a computer (if attending the live workshop, a laptop and charging cord), as there are many activities to work through.
	Text editor. If you don’t already have a favorite text editor, download Sublime Text, as it works well on both Mac and Windows and is free. If you have another text editor you prefer (e.g., Visual Studio Code, Atom, or even Notepad++), that will work too. Just make sure you can write code in plain text.
	Chrome browser. Chrome provides a Javascript Console that works well for inspecting JSON, so we’ll be using Chrome. Also, in order to read JSON responses more easily in the browser, install the JSON Formatter Chrome extension.
	Postman. Postman is an app that allows you to make requests and see responses through a visual client. Make sure you download the app and not the Chrome extension.
	curl. curl is essential for making requests to endpoints from the command line. Mac already has curl built-in, but it might not be available by default on Windows. (Some Windows 10 builds already have it in Powershell.) On Windows, open a Command Prompt and type curl -V. If it’s not installed, go to confusedbycode.com/curl and install a version (usually “With Administrator Privileges (free), 64-bit”). Close and re-open your Command Prompt and try typing curl -V again.
	Git. Git is a version control tool developers often use to collaborate on code. For Windows, see https://gitforwindows.org/ to set up Git and the Git BASH terminal emulator. For Mac, see Downloading Git.
	GitHub account. GitHub will be used for various activities, sometimes to demonstrate the Git workflow and other times as an authentication service for developer tools. If you don’t already have a GitHub account, sign up for one.
	Stoplight Studio Editor. When working with the OpenAPI specification, we’ll use the Stoplight Studio Editor. Stoplight Studio provides visual modeling tools for working with the OpenAPI specification. Stoplight offers both a web browser and standalone app versions of the editor. We’ll be using the web browser version because it provides more complete functionality (such as trying out requests). Go to https://stoplight.io/welcome, create a Stoplight account, and sign in.
	OpenWeatherMap API key. We’ll be using the OpenWeatherMap API for some exercises. It takes a couple of hours for the OpenWeatherMap API key to become active, so it’s best if you get the API key ahead of time — then when you get to the OpenWeatherMap API activities, you’ll be all set. To get your (free) OpenWeatherMap API key, go to https://openweathermap.org/. Click Sign Up in the top nav bar and create an account. After you sign up, OpenWeatherMap sends you an API key to your email. you can also find it when you log in and click the API Keys tab from the dashboard. Copy the key into a place you can easily find it.


Testing Your Setup

In the past, people have asked for some tests to check whether their laptops are correctly set up.

	If you want to test whether Postman works, open up the Postman app and paste this into the GET box: https://api.openweathermap.org/data/2.5/weather?zip=95050&units=imperial&appid=126cac1a482f51de0f1287b45ae2bf9a. Then click Send. If you get a response, it’s working correctly. (In rare cases, sometimes people have security restrictions on their computers that block all network access.)
	If you want to test whether curl is installed, open Terminal (on Mac) or Command Prompt (on Windows) and paste in curl --get "https://api.openweathermap.org/data/2.5/weather?zip=95050&units=imperial&appid=126cac1a482f51de0f1287b45ae2bf9a". If you get a JSON response, you’re good.
	To check whether Git is installed, open up Terminal (on Mac) or Command Prompt (on Windows) and type git --version. If it’s installed, you’ll see the version.


Video recordings

For video recordings of this course, see the Video recordings of API doc workshops. The page lists the most recent video recordings available. The video doesn’t go into the same level of detail as the written material, but it would be a good start.

See my Upcoming Presentations on my blog for details about future workshops and presentations.

Course slides

For the live workshops, I have various slides that cover different sections of this course. See Course Slides for the links. The slides use RevealJS, which is an HTML/CSS/JS framework for slides. The images are single-sourced between the site and the slides, so they’ll more likely stay in sync.

Copyright and re-use of materials

Some people have asked whether they can use materials from this course to give their own API documentation workshops. I only allow the material to be used for non-profit workshops where the workshop leader isn’t charging participants for the instruction. Of course, many of the ideas and concepts in this course aren’t specific or unique to me, and you’re entitled to fair use. However, please don’t just hijack my site’s materials, activities, and other information for your own commercial endeavors.

If you’re a teacher at a college or university (or high school) and are trying to teach APIs and developer docs to your students, feel free to use this site as part of your instructional materials. I appreciate links back to the site and attribution as needed (links pointing to my site boost search engine rankings). My larger goal for this site is to help educate and empower tech writers with developer documentation strategies, workflows, and best practices. If you’d like to share your API documentation course syllabus, contact me and I’ll add a link here.

Is this course really free?

Yes, this course is entirely free. Advertising helps make this content free, so you will see little text snippets and other ads on the course pages promoting links to API service providers. Sometimes I also include sponsored pages as well to highlight a vendor’s particular offerings. Whenever content is sponsored, I note that on the page. I also wouldn’t include any content in the course that didn’t meet my standards or which I wouldn’t recommend.

If you’d like to give back, feel free to buy me coffee by clicking the Buy me a coffee button on the bottom of each page or by buying the PDF of the course. I’m grateful to see many people who find enough value in the course to contribute back. Seeing contributions helps me feel in a more immediate way how much the content helps people.

PDF and Kindle/eBook formats

To read the same content in PDF or Kindle/eBook formats, see PDF and eBook formats. You can print out the section you want, or load it into a PDF reader to highlight/annotate content. Or if you prefer Kindle or another eReader, download the content in ebook format and load it onto your device.

Let me know if any content is out of date

One of the challenges in any technical course is ensuring the content stays up to date. Technology changes rapidly, and given the many hands-on activities in the course, it’s easy for some steps to become out of date as time passes. I’ve tried to maintain a healthy balance between general and specific details in the content here. If you find something is out of date, either add a comment on that page or let me know.

Stay updated

If you’re following this course, you most likely want to learn more about APIs. I publish regular articles that talk about APIs and strategies for documenting them. You can stay updated about these posts by subscribing to my free newsletter through the form below. My newsletter, branded as the I’d Rather Be Writing newsletter, helps you stay updated about everything going on in the techcomm world, with a special emphasis on API documentation, docs-as-code tools, and lately AI.

Other resources

If you’ve looking for additional resources to learn API documentation as well as tech writing best practices, check out the following:

	
Cherryleaf’s API documentation training course, by Ellis Pratt. (See a preview here.)


	
Peter Gruenbaum’s API doc courses on Udemy, by Peter Gruenbaum of SDK Bridge. (He has multiple Udemy courses on API docs, Swagger, Git, and more.)


	
Docs Like Code, by Anne Gentle


	
The Design of Web APIs, by Arnaud Lauret


	
Docs for Developers: An Engineer’s Field Guide to Technical Writing, Authors: Bhatti, J., Corleissen, Z.S., Lambourne, J., Nunez, D., Waterhouse, H.


	
Standards and Guidelines for API Documentation: For Technical Writers, Software Developers, Information and Software Architects, by Anne Tarnoruder




These resources aren’t API-specific but are still relevant:

	
Modern Technical Writing: An Introduction to Software Documentation, by Andrew Etter


	
Documentation Guide – Write the Docs Community


	
Every Page Is Page One: Topic-Based Writing for Technical Communication and the Web, by Mark Baker


	
The Product is Docs: Writing technical documentation in a product development group, by Christopher Gales and Splunk Documentation Team


	
The Good Docs Project: Best practice templates and writing instructions for documenting open source software


	
Google’s technical writing courses for engineers




For even more books, see Relevant Books from the Write the Docs site.




About Tom Johnson


I'm an API technical writer based in the Seattle area. On this blog, I write about topics related to technical writing and communication — such as software documentation, API documentation, AI, information architecture, content strategy, writing processes, plain language, tech comm careers, and more. Check out my API documentation course if you're looking for more info about documenting APIs. Or see my posts on AI and AI course section for more on the latest in AI and tech comm.
If you're a technical writer and want to keep on top of the latest trends in the tech comm, be sure to subscribe to email updates below. You can also learn more about me or contact me. Finally, note that the opinions I express on my blog are my own points of view, not that of my employer.




















2% Complete




2/165 pages complete. Only 163 more pages to go.






« Previous: Chapter 1: Introduction to REST APIs

 NEXT » What's new












Please enable JavaScript to load the comments.































 About idratherbewriting.com

Technical writing blog and API documentation course by Tom Johnson. 




Links

	 Blog
	API doc course
	Contact





Tom on social media

	 WTD Slack
	 Twitter
	 Linkedin





GitHub

	GitHub repo
	Log an issue
	Closed issues













© 2024 Tom Johnson



















